
New Tech Uses Smartphone Camera to Determine Whether Mosquitoes Carry Disease, Biopesticide
The diagnostic tool could improve public health efforts at a critical time.
Photo has been cropped and resized. Courtesy of Vivian Abagiu/University of Texas at Austin
For public health officials, the fight against mosquito-borne diseases is ever-evolving and ever-important. In recent years, scientists have turned to a biopesticide called Wolbachia to help stop mosquitoes from spreading diseases like Zika, dengue, chikungunya and yellow fever. But now, public health has a way to tell almost instantly whether such campaigns are yielding results.
Researchers at the University of Texas at Austin have developed a diagnostic tool that can “quickly and cheaply” determine whether a given mosquito belongs to the Aedes aegypti species, which carries these infectious diseases. What’s more, the system can tell whether the insect has had any contact with Wolbachia, according to
>>
The public health implications of such a technological breakthrough could be significant. Over the past 14 years, this species has played a role in tripling the number of mosquito-fueled disease cases in the U.S., according to researchers.
“Many of these diseases are spreading in areas where they weren’t common before,” Sanchita Bhadra, the paper’s first author and a research associate in the school’s molecular biosciences department, said in a statement. “Having surveillance is important in conjunction with any kind of outbreak, and this method allows a rapid test in the field.”
Her tool comprises a smartphone camera, a 3D-printed box and a chemical test. Together, these components adeptly identify the presence of the biopesticide, which is difficult and expensive to detect under current diagnostic testing standards. It provides a “yes” or “no” response on a user’s cellphone, clocking in at 97 percent accuracy.
The new system enables public health officials to test mosquitoes when they are not in a state of decay, which is standard now.
“Our easy-to-use and easy-to-interpret assays should facilitate widespread field mosquito surveillance with minimal instrumentation and high accuracy,” the authors wrote.
Get the best insights in healthcare analytics
Related

















































