
How Will New FDA Guidelines Affect Digital Health?
Paul Cerrato, M.A., and John Halamka, M.D., M.S., analyze the future of software as a medical device.
Software as a medical device (SaMD) and U.S. Food and Drug Administration (FDA) 510(k) clearance might not be the most familiar terms to all health system leaders, physicians and nurses who use computers, but if they hope to take advantage of the latest artificial intelligence (AI)-enabled programs, they will need to keep up. The most recent FDA proposed regulatory framework on SaMD is likely to transform patient care in the next few years. Understanding how the guidelines fit into the picture will enable clinicians and their organizations to take full advantage of the machine learning-based diagnostic and treatment algorithms now being introduced.
Deciphering the Terminology
To make sense of SaMD, it helps to understand the FDA’s expanded definition of a medical device. In the not-too-distant past, a medical device was a physical object — an EKG machine or a blood pressure cuff, for example. But the term now encompasses software used to assist in the diagnosis, treatment, mitigation or prevention of disease. As we explained in
- Mobile apps that transform a mobile platform into a regulated medical device and therefore are mobile medical apps: These mobile apps use a mobile platform’s built-in features such as light, vibrations, camera or other similar sources to perform medical device functions (e.g., mobile medical apps that are used by a licensed practitioner to diagnose or treat a disease).
- Mobile apps that connect to an existing device type for purposes of controlling its operation, function or energy source and therefore are mobile medical apps: These mobile apps are those that control the operation or function (e.g., change settings) of an implantable or body worn medical device.
- Mobile apps that are used in active patient monitoring or analyzing patient-specific medical device data from a connected device and therefore are mobile medical apps.
Although the FDA’s position on SaMD was designed to protect the public from unscrupulous vendors who create ineffective or unsafe digital tools, since publishing these regulations, the agency has come to realize that they might be too restrictive in some situations and could actually damper healthcare innovation. That’s especially the case when it comes to machine learning-based software. A closer look at the FDA clearance/approval process helps explain why this problem has arisen.
Medical device applications are handled with three processes:
- Premarket clearance, also called 510(k)
- Premarket approval
- De Novo classification
A
Why Do We Need New SaMD Rules?
The need for new regulations can be summed up in two words: adaptive technology. The current regulations were designed to handle “locked” technology, such as software whose functioning does not change. Because many machine-learning systems are self-learning, by definition the software does change, adapting to new input from training and test data sets. In
To cope with this new situation, the agency is proposing what it calls a “predetermined change control plan” for device developers who are seeking premarket clearance. Submitters would have to provide FDA with a plan that spells out the types of anticipated modifications they see coming down the road, as well as the methodology they plan to use to implement these changes in a controlled manner. The ultimate goal of such a plan is to manage patients’ risk from the software. Vendors who agree to this proposed arrangement would be expected to commit to transparent, real-world performance monitoring of their AI and ML software. They would also be willing to provide periodic updates to the agency. According to FDA, this new approach to SaMD would allow the regulator to embrace the iterative improvement power of AI- and machine learning-based software as a medical device, while assuring patient safety.
To understand how the proposed regulatory framework world work in the real world, one first needs to grasp two rather obscure terms that the agency has introduced: SaMD pre-specifications (SPS) and algorithm change protocol (ACP). SPS refers to the types of changes that a vendor plans to implement in its software. In other words, the company has to spell out what its algorithm is supposed to become as it learns from its new inputs, namely the new training and testing data that it encounters. ACP describes the method the vendor plans to use to make sure the revised algorithm performs as expected. The guidelines explain: “The ACP is a step-by-step delineation of the data and procedures to be followed so that the modification achieves its goals and the device remains safe and effective after the modification.” The agency envisions four components to this change protocol, as outlined in the Figure.
Putting the FDA Framework to the Test
These proposals might sound rather vague without a real-world example of how they might apply to an actual AI/ML system. Imagine a mobile app that allows a smartphone to take a photo of a skin lesion so that a physician can make a clinical judgement about whether it’s a normal mole or skin cancer. Since the app drives clinical management of a serious healthcare problem, it’s considered a medical device that falls within the FDA’s jurisdiction. If a vendor decides it wants to modify the app, it first has to explain what changes it plans to make — the SPS portion of the review process. The FDA framework document gives possible modifications. For instance, the algorithm may be exposed to a new data set with images of skin lesions with the goal of improving its sensitivity and specificity. A more sensitive algorithm is more likely to detect true positive findings, such as how the number of photos identified as skin cancer that really are skin cancer would increase as a result of the new training. The software would be more specific if it succeeded in identifying more true negatives, such as how the number of photos labeled as not skin cancer that really aren’t skin cancer would increase.
The change protocol or ACP for this dermatologic app would involve the manufacturer submitting to FDA its method for making these improvements. The developer would have to explain how it generated the data set, discuss reference standard labeling and provide a comparative analysis and performance requirements, including sensitivity and specificity. If the vendor could collect the needed data and demonstrate its improved sensitivity and specificity, and it updated its labeling and communicated the improvements to its audience, “the modified algorithm that ‘learned’ on real-world data can be marketed without additional FDA review.”
On the other hand, if this same hypothetical app manufacturer wanted to sell this mobile app to patients to use on their smartphones, it would face a different regulatory scenario. The vendor would direct patients to follow up with a dermatologist after receiving a preliminary analysis of a malignancy. And most important, because the app now introduces new risks that were not addressed in the current SPS or ACP, the vendor might have to obtain a new premarket submission or application and submit an updated SPS and ACP.
Industry Feedback on SaMD Regulations
The agency hopes that by outlining these two scenarios — one in which the company requires additional FDA clearance or approval and one in which it does not — it will convince developers that it’s becoming more flexible and is fostering innovation. The proposed framework was released in April 2019 for public comments; the comment period closed on June 3.
It’s impossible to predict how the FDA will respond to all these comments. And the departure of Scott Gottlieb, M.D., as commissioner adds to this uncertainty. But it seems the policies and philosophy put in place by Gottlieb may well continue to steer the ship. According to
One reason to be optimistic about the FDA’s position on SaMD is the fact that much of SaMD’s future has already been decided by Congress with the passage of the 21st Century Cures Act, passed in December 2017 to encourage innovation. Section 3060, which deals specifically with regulation of medical devices, “expressly excluded from the definition of medical device five distinct categories of
Attorneys with Arnold & Porter explain that the guidelines established a three-step clinical evaluation process that “emphasizes that the level of evaluation and independent review should be commensurate with the risk posed and encourages manufacturers to use continuous monitoring to understand and modify software based on real-world performance.” The key word here is risk. While entrepreneurs planning to invest in SaMD would be wise to seek the advice of lawyers with expertise in the intricacies of FDA regulations, the agency is making it clear that it wants to give developers more room for innovation, especially if their products pose little risk of harming patients.
About the Authors
Paul Cerrato has more than 30 years of experience working in healthcare as a clinician, educator, and medical editor. He has written extensively on clinical medicine, electronic health records, protected health information security, practice management, and clinical decision support. He has served as editor of Information Week Healthcare, executive editor of Contemporary OB/GYN, senior editor of RN Magazine, and contributing writer/editor for the Yale University School of Medicine, the American Academy of Pediatrics, Information Week, Medscape, Healthcare Finance News, IMedicalapps.com, and Medpage Today. HIMSS has listed Mr. Cerrato as one of the most influential columnists in healthcare IT.John D. Halamka, M.D., leads innovation for Beth Israel Lahey Health. Previously, he served for over 20 years as the chief information officer (CIO) at the Beth Israel Deaconess Healthcare System. He is chairman of the New England Healthcare Exchange Network (NEHEN) and a practicing emergency physician. He is also the International Healthcare Innovation professor at Harvard Medical School. As a Harvard professor, he has served the George W. Bush administration, the Obama administration and national governments throughout the world, planning their healthcare IT strategies. In his role at BIDMC, Dr. Halamka was responsible for all clinical, financial, administrative and academic information technology, serving 3,000 doctors, 12,000 employees, and 1 million patients.
Get the best
Related
















































